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Combining the synthetic aperture radar (SAR) with the optical phase recovery, Fourier ptychography (FP) can be
a promising technique for high-resolution optical remote imaging. However, there are still two issues that need to
be addressed. First, the multi-angle coherent model of FP would be destroyed by the diffuse object; whether it can
improve the resolution or just suppress the speckle is unclear. Second, the imaging distance is in meter scale and
the diameter of field of view (FOV) is around centimeter scale, which greatly limits the application. In this paper,
the reasons for the limitation of distance and FOV are analyzed, which mainly lie in the illumination scheme. We
report a spherical wave illumination scheme and its algorithm to obtain larger FOV and longer distance. A noise
suppression algorithm is reported to improve the reconstruction quality. The theoretical interpretation of our
system under random phase is given. It is confirmed that FP can improve the resolution to the theoretical limit of
the virtual synthetic aperture rather than simply suppressing the speckle. A 10 m standoff distance experiment
with a six-fold synthetic aperture up to 31 mm over an object of size ∼1 m × 0.7 m is demonstrated. © 2023
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1. INTRODUCTION

Optical remote imaging is one of the important means and
technical supplement of remote sensing. Improving the resolu-
tion of space cameras has been unremittingly explored in the
field of high-resolution remote sensing. The angular resolution
is defined as 1.22 λ∕D, where λ is the center wavelength, andD
denotes the size of the imaging aperture [1]. According to the
formula, increasing the aperture of a space camera, especially
the main mirror, is the most direct way to improve spatial res-
olution and extend the field of view (FOV). However, it im-
poses geometric aberrations to the optical system; thus more
optical surfaces are required to optimize the aberrations in turn,
which brings a series of problems such as a larger volume of
space cameras and increased cost and launch risk [2].
Therefore, the aperture of a single mirror in space cameras
based on the traditional incoherent imaging system cannot
be increased infinitely and is also limited by manufacturing
techniques.

A passive optical synthetic aperture camera can bypass the
manufacturing of large-aperture mirrors, but it must ensure the
confocal and cophase between sub-apertures. For example, the
six sub-apertures in Golay6 must achieve strict confocal and
cophase with an accuracy of up to λ∕10 to meet the imaging

requirements [3,4], which requires extremely high performance
of phase detection and posture control. Moreover, the stability
of the platform is demanding, which makes it tough to be
widely applied in engineering.

Synthetic aperture radar (SAR) is an active high-resolution
radar technology that can directly measure the complex ampli-
tude wave field of sub-apertures through an antenna with a
temporal resolution of picoseconds, and then stitch this sub-
aperture information in the frequency domain to obtain a vir-
tual large aperture with high resolution [5]. Efforts have been
made to extend the concept of synthetic apertures to the near-
infrared band [6–8]. According to the spatial resolution
formula, the imaging resolution can be further improved if real-
izing synthetic apertures in the visible range of light. However,
the optical band is four to five orders of magnitude higher than
the microwave frequency. Compared with antennas, an optical
detector needs to record the complex amplitude wave field at
the level of femtoseconds, which is far beyond the ability of
modern imaging devices.

Fourier ptychographic microscopy (FPM) is a promising
computational imaging technique invented by Zheng et al.
in 2013 [9]. It is named after ptychography, which was pro-
posed by Rodenburg and Faulkner in 2004 [10]. FPM uses
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coherent illumination to produce a relative shift between the
aperture and object’s spectrum, and then captures a set of
low-resolution images corresponding to different sections of
the Fourier spectrum using a small-aperture lens. Fusing the
spectrum of these low-resolution images in the Fourier domain
can reconstruct a high-resolution image corresponding to a
larger synthetic aperture. It breaks through the trade-off be-
tween high resolution and large FOV in traditional optical im-
aging with a combination of synthetic aperture and phase
retrieval [11,12]. At the same time, it recovers aberrations of
the optical system, and thus realizes digital compensation of
aberrations for the full FOV [13]. Currently, FPM has been
proved not only to be a powerful tool to solve the constraints
of FOV and resolution, but also a paradigm to address a series
of trade-off problems, such as the intrinsic trade-off between
angular resolution and spatial resolution in the field of light
field microscopy [14].

In 2014, Dong et al. [15] first reported a conceptual experi-
ment that extended the application scenario of FPM from
micro to macro imaging, opening the possibility of FP technol-
ogy in industrial inspection or remote imaging. This has at-
tracted much attention, and a series of related work can be
referred to Refs. [16–20]. Notably, Holloway et al. [5] reported
the FP-based optical synthetic aperture visible imaging, termed
SAVI. In 2017, they further improved the theory and built a
long-range reflective FP imaging device [21]. The imaging dis-
tance was extended from 0.7 to 1.5 m, and the imaging reso-
lution was improved by six times. In the implementation of
SAVI, two fundamental modifications are required to adapt
previous FPM to long-distance imaging. First, as the distance
is increased by orders of magnitude, a highly flexible setup
based on reflective illumination and camera scanning was pre-
sented. Second, previous works relied on smooth targets. While
imaging everyday objects with rough surfaces that scatter inci-
dent light in random directions, denoise processing is needed to
address the resultant speckle. However, the FOV is always
changing slightly due to the camera scanning scheme, and
the effective FOV that can be recovered eventually is only
the area where all sub-apertures overlap, so the method has
low utilization of FOV. In 2019, we reported a coherent syn-
thetic aperture imaging method based on laser multi-angle il-
lumination [22], called CSAI. The resolution is improved by
4.5 times at the FOV of 12.4 mm. Despite these efforts
[21–26], there is still an important scientific problem and
two big challenges that need to be addressed. First, the
multi-angle coherent model of FP would be destroyed by dif-
fuse objects or atmosphere; thus whether the FP model can
improve resolution or suppress speckle is unclear. Second,
the imaging distance and the size of FOV are limited since the
illumination of convergent light requires extra mirrors in the
optical path, which greatly hinders the widespread application.
Third, such active illumination of FP requires a dark room and
a high-power laser, which is susceptible to stray light and
speckle noise.

In this paper, we report an FP imaging scheme for long-
range and larger FOV reflective imaging by employing a diver-
gent spherical optical wave for illumination and camera scan-
ning. The divergent spherical wave in our scheme can increase

the FOV of illumination and break the limitation of FOV with
the convergent optical wave. We provided rigorous theoretical
analysis to explain the generation of speckles, which differs
from traditional FPM implementations with quasi-plane wave
illumination. In our reflective FP scheme, the random phase of
the object, coming from its microscopic rough surface varia-
tion, will be mixed with a spherical wave so that the captured
images are manifested as speckles. As both resolution and
speckle size are inversely proportional to aperture size, we dem-
onstrated that by creating a synthetic aperture, our FP imaging
scheme is able to reduce speckle size and improve resolution.
We analyzed the limit resolution of coherent imaging with
speckles based on the Rayleigh criterion, and quantitatively va-
lidated the conclusion on our experimental platform, which can
be vital for predicting and evaluating the performance of prac-
tical coherent imaging systems. To further remove speckles in
reconstruction, a despeckle algorithm was presented based on
the negative exponential distribution, and we realized PNSR
values up to around 25–30 dB in simulations. We experimen-
tally performed a 10 m stand-off FP imaging over an object of
size ∼1 m × 0.7 m with a synthetic aperture of 31 mm. The
imaging distance and FOV have increased by orders of magni-
tude compared with the SAVI method. It is noted that our pro-
posed method has the capability for further scaling to a
longer range.

2. MATERIALS AND METHODS

The configuration of our proposed FP imaging system is shown
in Fig. 1(a). A divergent spherical wavefront produced by a laser
source illuminates the diffuse object, and the reflected light from
the object is then captured by a camera. The laser is moved to
illuminate the object from different angles, and a sequence of raw
images is recorded accordingly as shown in Fig. 1(b). The raw
captured image is blurred and degraded due to the influence of
large speckles. An image with a synthetic aperture can be recon-
structed from these raw images via FP reconstruction. By creat-
ing a synthetic aperture, the FP reconstructed image greatly
reduces the speckle size and improves the resolution as shown
in Fig. 1(c). A speckle denoising algorithm is further operated
to improve the quality of the reconstruction as shown in
Fig. 1(d).

A. Comparison of Different Illumination Schemes
There are generally two ways to realize relative spectrum shift-
ing in FP imaging. The camera scanning scheme [Fig. 2(a)] is
based on the theory that far-field diffraction corresponds to
Fourier transform mathematically. Unfortunately, in order to
achieve far-field diffraction, the size of the camera lens should
be extremely small. For a 10 m distance imaging scenario, the
maximum diameter of the camera lens is only 1.6 mm, which is
much smaller than what we commonly use. In addition, the
scanning of the camera produces a varying FOV and causes
a limited FOV in the effective area, as shown in Fig. 2(b).

Laser scanning is another way widely employed in FP im-
aging, which can basically be classified into three types, as
shown in Fig. 3. The illumination of convergent light
[Fig. 3(a)] has been utilized in SAVI, and quasi-plane wave il-
lumination [Fig. 3(b)] is quite common in the field of FPM.
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The two schemes also suffer from a limited FOV as conver-
gence or collimating mirrors are used in the design of the op-
tical path. Meanwhile, the shifting light source illuminates the
object from different angles, which implies that the light wave

should be generated to cover the whole object’s area. Therefore,
they are quite impractical for the case of macroscopic imaging
with long distances (e.g., in remote sensing). For the illumina-
tion of divergent light, as shown in Fig. 3(c), imaging FOV
and distance can both be greatly increased since no extra mir-
rors are required. The eventual imaging distance is only
related to energy intensity and environmental disturbance.
This illumination pattern is what we adopted, and the
corresponding forward model will be established in the follow-
ing section, Section 2.B.

B. FP Forward Model and Reconstruction
As shown in Fig. 3(c), the laser source provides a divergent
beam to illuminate the object. We can model the wavefront
in front of the object as a spherical wave S�x�, which is
given by

S�x� ≈ exp

�
ik
2zs

�x − xs�2
�

� CsQ s�x�Ls�x�, (1)

where Cs � exp�ikxs · xs∕2zs� is the constant phase term irrel-
evant to the object plane x, and Ls�x� � exp�−ikx · xs∕zs� and
Q s�x� � exp�ikx · x∕2zs� are the linear phase term and the
quadratic phase term. The illumination is transmitted to the
object, and part of reflection is directed to the camera. The field
Es�x� immediately after the object is

Es�x� � S�x�O�x� � S�x�A�x� exp�ikθo�x��
� CsA�x� exp�ikθo�x��Q s�x�Ls�x�, (2)

where A�x� is the amplitude of the object, and θo�x� is the
object’s random phase that comes from the random height fluc-
tuation of the surface. The object field Es�x� travels to the cam-
era lens over a distance zo, and then propagates an imaging
distance zI to the sensor plane. According to the lens law of
geometrical optics (1∕f � 1∕zo � 1∕zI ), the intensity image
captured by the sensor is given by

I�ξ� � jF −1fF fEs�x�Q o�x�g × P�u�gj2

� jF −1fF fA�x�eikθo�x�Q s�x�Q o�x�Ls�x�g × P�u�gj2,
(3)

where Qo�x� � exp�ikx · x∕2zo� is the quadratic phase term
from the object to the lens. P�u� is the pupil function
of the lens, and the vector u is the frequency coordinate.
For an aberration-free optical system, the pupil function is
given by

Fig. 2. Comparisons between two typical remote images via FP. (a),
(b) Camera scanning and its FOV reduction. (c), (d) Laser scanning
and its FOV reduction.

Fig. 3. Comparisons among three kinds of illumination schemes for
remote imaging via FP. (a) Convergent light illumination. (b) Quasi-
plane wave illumination. (c) Divergent light illumination. For simplic-
ity, the coordinate of the object’s transverse plane is x. The laser is
located at xs , and its distance to the object’s center is zs . The object
distance zo and the image distance zI satisfy the lens law of geometrical
optics: 1∕f � 1∕zo � 1∕zI , where f is the focal length.

Fig. 1. (a) Proposed scheme. The object is illuminated by a diver-
gent laser beam to increase the FOV. The scattering from the object is
recorded by the sensor via an imaging lens. As the numerical aperture
of the imaging system is fixed, a limited resolution image is obtained
on the sensor plane. (b) FP raw images. By shifting the laser source
with an x-y moving stage, a sequence of raw images is captured. An
example of a raw image is blurred and degraded by speckles. Using
the captured image sequence, the super-resolution reconstruction
can be achieved with the proposed method. The FP reconstruction
in (c) reduces the speckle size and improves the resolution. A speckle
denoising algorithm is further performed to improve the quality of the
reconstruction, and its denoising image is shown in (d).
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P�u� �
�
1 juj < D∕2
0 else

: (4)

We define the dummy object as

ω�x� � A�x� exp�ikθo�x��Q s�x�Q o�x�

� A�x� exp
�
ik
�
1

zs
� 1

zo

�
x · x � iθo�x�

�
: (5)

Substituting Eq. (5) into Eq. (3), the FP forward model under a
spherical wave is given by

I s�ξ� � jF −1fF fω�x�Ls�x�g × P�u�gj2

� jF −1fΩ�u − us�P�u�gj2, (6)

whereΩ�u� is the Fourier spectrum of the dummy object ω�x�,
and us � kxs∕zs is the relative spectrum shift produced by the
linear phase Ls�x� of the light source. Moving the light source
varies the linear phase Ls�x�, and thus shifts the dummy ob-
ject’s spectrum Ω�u� relative to the lens aperture. In this way,
the FP-type dataset can be captured.

Using phase retrieval algorithms, FP allows the recovery of
missing phase with the constraint from the overlaps between
the sub-aperture spectrum. Although extensive works have
been contributed to solving the FP phase retrieval problem
[13,27–30], the alternating projection (AP) method is still
the stable and widely used option. The concept of AP origi-
nated from the Gerchberg–Saxton (GS) algorithm, where
the magnitude constraints from the measured images are im-
posed to the field estimate in the image domain.

In the mth iteration, the current estimates of the object and
the pupil function are denoted as Ω�m��u� and P�m��u�. For the
sth image I s�ξ�, the sub-spectrum estimate Ψ�m�

s �u� is inversely
Fourier transformed to form the estimate of the field, denoted
as ϕ�m�

s �ξ� � F −1fΨ�m�
s �u�g. We impose the magnitude con-

straint to ϕ�m�
s �ξ� as

ϕ�m�1�
s �ξ� �

ffiffiffiffiffiffiffiffiffiffi
I s�ξ�

p ϕ�m�
s �ξ�

jϕ�m�
s �ξ�j

: (7)

We can then obtain the updated sub-spectrum estimate as
Ψ�m�1�

s �u� � F fϕ�m�1�
s �ξ�g. Ω�u� and P�u� are then updated

according to the gradient descent scheme as

Ω�m�1��u� � Ω�m��u� � conj�P�m��u� us��
max2�jP�m��u� us�j�

�Ψ�m�1�
s �u� us�

−Ψ�m�
s �u� us��, (8)

P�m�1��u� � P�m��u� � conj�Ω�m��u − us��
max2�jΩ�m��u − us�j�

× �Ψ�m�1�
s �u� −Ψ�m�

s �u��: (9)

The initial estimate of the pupil function P�u� is defined to be
an ideal circular aperture from Eq. (4). The Fourier transform
of the average of all captured intensity images is chosen to ini-
tialize Ω�u�, which helps to suppress speckle in images.

C. Speckle Denoising Algorithm
Speckle is not real noise in a conventional sense. Since the ran-
dom phase distorts the intensity field, the seeming randomness

of the speckle intensity manifests as “noise.” The probability of
the speckle intensity I follows the negative exponential distri-
bution [31] p�I� ∝ exp�−I∕μ�, where μ is the uncorrupted in-
tensity represented as the mean intensity. It is straightforward to
establish a multiplicative noise model I � μ × n, where n is the
multiplicative speckle noise and satisfies p�n� ∝ exp�−n�. By
taking the logarithm of the multiplicative noise model, it is
transformed into the additive noise model

I log � ln�I� � ln�μ� � ln�n� � μlog � nlog: (10)

The probability distribution of nlog is non-Gaussian, so the
classical Gaussian-based denoising algorithms are less effective
on the speckle noise.

Here, we propose a novel speckle denoising algorithm; refer
to Appendix B for the specific deduction. The flowchart of the
algorithm is shown in Fig. 4. We first take the logarithm of the
speckle image I as I log � ln�I�. The logarithmic speckle noise
is estimated as n̂log � I log −De�I log�, where De�·� is the
BM3D denoising operation [32]. n̂ log is then transformed ac-
cording to n̂tran � f �n̂log�, where f �v� is the transformation
function defined by f �v� � v when v ≥ 0 and f �v� �
−

ffiffiffiffiffi
−v

p
when v < 0. The new noisy image is constructed by

Î tran � De�ylog� � n̂tran. We can obtain the denoised logarith-
mic image as μ̂log � De�Î tran�. Finally, FP reconstruction is op-
erated and a denoised reconstructed image can be obtained.

Figures 4(a)–4(d) show the simulation result of our speckle
denoising algorithm and its comparison with the BM3D algo-
rithm. A cameraman picture is chosen as the ground truth, and
the speckles are produced based on the negative exponential
distribution. We select the peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) as the criteria to evaluate des-
peckling performance. It can be seen that our algorithm pro-
vides much cleaner background information, presenting a more
powerful ability to eliminate the effect of speckle.

3. RESULTS

A. Simulations
First, we conducted simulations to visualize and explain FP
reconstruction of the object, where a resolution target is used
as the amplitude, and three kinds of phase terms are considered.
When illuminated by plane waves, the object contains no phase
term. As shown in Fig. 5(a-1), the spectrum follows a nicely
structured pattern with a peak at the DC component and
decaying magnitudes for high spatial frequency. The raw im-
ages contain brightfield images and darkfield images, corre-
sponding to the DC component and high frequency,
respectively. Stitching up the spectrum from these raw images
can finally produce a high-resolution image. The quadratic
phase term is the case where a spherical wave is used to illu-
minate transmissive objects. One obvious difference with the
no-phase case is that each raw image contains a brightfield part
and a darkfield part, as shown in Fig. 5(b-2), since the quadratic
phase term introduces optical waves with higher incident angles
exceeding the numerical aperture. Also, the FOV expands along
with the improved resolution [Fig. 5(b-3)].

Figure 5(c) shows our case where the phase term is the mix-
ture of random phase and quadratic phase. As seen from
Eq. (5), the phase of dummy objects contains two parts:
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quadratic phase from the optical path and imaging lens and
random phase of the rough surface. The spectrum does not
exhibit any meaningful structure since the random phase domi-
nates the quadratic phase. As shown in Fig. 5(c-2), the raw im-
ages of the dummy object are distributed with speckles, which

degrades the image quality. By creating a large synthetic aper-
ture, we can reduce the speckle size and recover the high-
resolution image of the dummy object as shown in Fig. 5(c-3).
In conclusion, FP reconstruction enables high-fidelity recovery
of phase information, even when the phase fluctuates signifi-
cantly as random phase. Although the amplitude is of the most
concern in coherent imaging, the phase term will have a pro-
found impact on the image when the aperture is limited.

B. Feasibility and Performance
We performed a 10 m standoff-distance experiment to demon-
strate the performance of our scheme. The imaging distance is
around 10 times that of the state-of-the-art method in SAVI
[21]. The experimental setup is shown in Fig. 6(a). The diver-
gent beam is produced using a 532 nm single-mode laser source
and a plano–concave lens (focal length of −10 mm ). We em-
ploy a lens with 75 mm focal length and 5 mm aperture for
imaging, and then record the raw images with an image sensor
(IMX178, 2048 × 3056 pixels, 2.4 μm pixel pitch). In addi-
tion, a linear polarizer is placed before the camera to filter
out the noninterference light. We selected a large landscape
painting as the object, and part of the painting (∼1 m ×
0.7 m) is imaged by our system. A 2D translation stage
(Zolix, PSA050-11-X) is used to shift the laser source with
the step size of 0.875 mm, resulting in an overlapping rate
of 82.5%. Here, the camera is facing the object directly, and
the scanning plane of the light source is perpendicular to
the camera’s normal direction. A grid of 31 × 31 low-resolution
images is collected, and the maximum synthetic aperture is
31 mm, which is six times larger than the lens’ aperture.

A single capture from the imaging system is shown in
Fig. 6(b). Due to the limitation of the aperture, the raw image
exhibits significant blur and diffraction. As the surface of the
painting is rough, severe speckles can be observed, which
further degrade the image quality. As seen in Fig. 6(c), the re-
constructed image can provide much higher resolution and the
size of speckles is decreased compared with the raw data. For

(a) 

(b)

(c)

(a-2) Raw Images  with small aperture (a-1) Fourier Spectrum

(b-1) Fourier Spectrum

(c-1) Fourier Spectrum

(a-3) synthetic aperture

(b-3) synthetic aperture

(c-3) synthetic aperture

(b-2) Raw Images  with small aperture 

(c-2) Raw Images  with small aperture 

Fig. 5. Comparison of FP-based synthetic aperture imaging with
different phase terms. The resolution target is used as the amplitude.
(a) Results when the phase term is zero. (b) Results when the phase
term is quadratic phase. (c) Results when the phase term is a mixture
of quadratic phase and random phase. (a-1)–(c-1) Fourier spectrum.
(a-2)–(c-2) Raw image with small aperture. (a-3)–(c-3) Synthetic
aperture.

Fig. 4. Proposed despeckle algorithm with flow chart (on the left) and despeckle simulation (on the right). (b) The speckle image is simulated
from the (a) ground truth based on the negative exponential distribution. (d) The proposed method presents more favorable result than the
(c) BM3D algorithm in terms of both the quantitative SSIM and PSNR metrics and the visual quality.
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example, we can clearly observe the mild structure on the build-
ing in Fig. 6(c1) and leaf patterns in Fig. 6(c2), which are not
resolvable in the raw captures. After applying the proposed
speckle denoising algorithm, the speckles are smoothed and re-
moved, resulting in better visual quality as shown in Fig. 6(d).

Next, we performed the experiment on a self-designed res-
olution target (42 cm × 29.7 cm) using the same experimental
setup. The target contains several types of commonly used res-
olution charts as shown in Fig. 7(a). A grid of 27 × 27 low-res-
olution images is collected, and the maximum synthetic
aperture is 27.75 mm. The raw image captured by the imaging
system is shown in Fig. 7(b), which is distributed with large
speckles. After the FP reconstruction, the image resolution is
greatly improved with a smaller size of speckles. The denoising
algorithm effectively removes the effect of speckles, improving

the image contrast while retaining the same resolution improve-
ment as traditional FP algorithms. The results presented above
are based on a qualitative analysis of resolution; we will further
provide the related quantitative performance in the consequent
section.

C. Resolution Analysis of Coherent Imaging with
Speckles
The Rayleigh criterion has been widely used for resolution es-
timation in incoherent imaging. Two incoherent point sources
apart with the Rayleigh limit can just be resolved. It becomes
complex for coherent imaging as the interference intensity is
phase dependent although the complex field is linear
[33,34]. In this case, two coherent point sources with the same
phase will not be resolved. However, they become fully resolved
when the two sources have a phase difference of π.

For reflective coherent imaging, the random phase of a
rough surface will produce speckles, which degrade image qual-
ity and resolution. A conservative way to define the resolution
limit is to consider the worst case. Considering two point
sources with the same phase, it is easy to obtain the profile
of the superimposed intensity. Theoretically, it can be calcu-
lated from the superimposed image that when the central dip’s
intensity is 81% of maximum intensity on either side, the

Fig. 6. (a) Experimental setup: 10 m standoff-distance super-resolu-
tion coherent imaging over the landscape painting. The target and the
imaging setup are shown in (a-1) and (a-2), respectively. Note that the
experiment is performed in the dark environment at night with the light
off. The imaging area is about 1 m × 0.7 mmarked in blue box. (b) The
raw image shows low resolution and strong speckles. After the six times
super-resolution with FP, the (c) reconstructed image significantly im-
proves the resolution and reduces the speckle size. Further despeckle
processing is performed on the FP reconstructed image, and the (d) des-
peckled image is smooth after reducing the intensity variation in the
speckle regions. The brightness of (b-2), (c-2), and (d-2) is adjusted
for better visualization. (a-1) Target. (a-2) Imaging setup. (b) One ex-
ample of camera output. (c) Reconstruction. (d) Reconstruction with
denoising.

Fig. 7. 10 m standoff-distance super-resolution coherent imaging
over the resolution target. (a) Ground truth of self-designed resolution
target containing different resolution charts, where the bottom right
target will further be used for qualitative analysis of resolution
in Fig. 9. (b) Raw image captured by the imaging system.
(c) Reconstructed image with FP super-resolution. (d) Despeckled im-
age from the FP reconstructed results. (a-1), (a-2), (b-1), (b-2), (c-1),
(c-2), (d-1), (d-2) are zoomed images from (a), (b), (c), and (d). The
brightness of (b), (c), and (d) is adjusted for better visualization.
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angular distance of two points is 1.60λ∕D (see Appendix A).
Thus, the Rayleigh limit for coherent imaging under speckle
is defined as

R � 1.60λ
D

, (11)

where λ is the wavelength, and D is the diameter of the imag-
ing lens.

To investigate the resolution performance of our method,
we imaged a negative USAF target with white paint sprayed
to the chrome surface, as in the work of SAVI [21]. The im-
aging distance is reduced to 1 m due to the small size of the
target (18 mm × 18 mm). The target is imaged through the
back of a glass plate to retain the high-resolution features.
The laser source is translated with the stepsize of 1 mm, result-
ing in an overlapping rate of 80%. A grid of 31 × 31 low-
resolution images is collected, and the maximum synthetic
aperture is 35 mm.

The reconstruction results with SA of 10 mm, 18 mm, and
35 mm are presented in Fig. 8(a). It can be seen that an in-
creased synthetic aperture leads to higher resolution and smaller
speckle size. We then process the reconstructed results with

the speckle denoising algorithm. The imaging quality further
improves with the removal of speckle patterns. Figure 8(b)
shows the close-up reconstructed images of four typical patterns
in the target. The blue dashed line demarcates resolvable fea-
tures, and the features below this line can be clearly identified.
The contrast metric is selected as the criterion to evaluate the
resolution performance, which is given by

C � W − B
W � B

, (12)

whereW and B are average intensity values for three white and
two black bars of the pattern, respectively. The area of bars is
manually located using a high-resolution USAF image and then
scaled to the correct size for each tested image. Figure 8(c) plots
the contrast metric for reconstructed images with SA �
18 mm and SA � 35 mm. Obviously, the contrast is improved
with the increase of synthetic aperture.

Moreover, we set a contrast threshold as 0.1 to determine
the limit resolution of the reconstructed images, since the value
of the contrast metric is around 0.1 for the Rayleigh criteria
(C � �1 − 0.81�∕�1� 0.81� ≈ 0.1). The minimum resolvable
line width of various SA is then determined, and marked by red
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Fig. 8. USAF resolution target is used to characterize the resolution under different synthetic apertures with FP. (a) Raw image and examples of
reconstructed images of SA 10 mm, SA 18 mm, and SA 35 mm. (b) Magnified regions of various bar groups in (a). The blue dashed line demarcates
resolvable features. Features below this line are resolvable. (c) Contrast plots for the reconstructed images with SA � 18 mm and SA � 35 mm.
(d) Resolution is inversely proportional to the size of the synthetic aperture. The stars denote the limiting resolution by visually inspecting the
recovered images with FP-based super-resolution and despeckle processing under various SA. We observe that the visually determined resolution
agrees with the proposed limit [Eq. (1)] for coherent imaging. Moreover, the proposed despeckle procedure does not degrade the resolution, and it
helps to discriminate the bars by reducing the speckle variation. The brightness of (a) and (b) is adjusted for better visualization.
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stars in Fig. 8(d). We can see that the experimental resolution
limit roughly agrees with the curve of theoretical values.

Using the resolution bars from the right bottom of Fig. 7,
we quantitatively demonstrate the resolution performance of
our scheme, and the results are shown in Fig. 9. The theoretical
minimum resolvable line width is 1.7 mm. As can be seen in
the raw image of Fig. 9(b), the bars can be resolvable when the
line width is 2 mm. FP reconstruction improves the resolution
to 0.357 mm line width, which is at least 4.7 times smaller
compared with the raw image.

D. Comparison of Different Illumination Schemes
We experimentally duplicated a 1 m standoff-distance SAVI
setup to validate the FOV expansion of our method compared
with the camera scanning scheme of SAVI. A convex lens (diam-
eter: 2 inches, focal length: 300 mm) is inserted between the laser
source and the target to compensate for the quadratic phase. As
illustrated in Fig. 3(a), the illumination is converged after the
lens, and thus a light spot will appear on the target plane.
The spot size has been confined by the practical size of the lens,
which leads to the limited FOV of SAVI. The camera is mounted
on the translation stage and moved to realize spectrum shifting.
The distance between adjacent positions of the camera is 0.5 mm
to ensure an overlapping rate of 78%. A grid of 26 × 26 images is
captured to produce a synthetic aperture of 14.84 mm. The ex-
perimental results of SAVI are shown in Figs. 10(d)–10(f ). To
make a fair comparison, we keep the configuration of the setup
exactly the same as SAVI. We only replace the compensation lens
in SAVI with a plano–concave lens (diameter: 6 mm, focal
length: −6 mm) to produce a divergent beam. The experimental
results of our method are shown in Figs. 10(a)–10(c). As we can
see, our method demonstrates a significantly improved FOV
(around six times) compared with SAVI.

Fig. 9. Resolution analysis of 10 m super-resolution coherent im-
aging. (a) Zoomed images of resolution bars from the right bottom of
Figs. 7(a)–7(d). (b) Close ups of resolution bars with different reso-
lutions. The resolution of the raw image is 0.25 lp/mm. After the FP
reconstruction and despeckle processing, the resolution is increased
to 1.4 lp/mm. The brightness of (a) and (b) is adjusted for better
visualization.

Fig. 10. Comparison of the SAVI and the proposed scheme. To make a fair comparison, similar parameters are used for the setups of both
schemes. The camera with 2.34 mm aperture is placed 1 m away from the object. A grid of 26 × 26 images is captured with 78% overlap ratio
to achieve a synthetic aperture of size 14.84 mm. (a)–(c) Low-res image, reconstructed image, and denoised image with the proposed method. (d)–
(f ) Low-res image, reconstructed image, and denoised image of SAVI scheme.
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4. DISCUSSION AND CONCLUSION

We demonstrated a reflective long-range FP imaging scheme,
which allows synthetic aperture imaging with large FOV.
Existing methods, which image diffuse reflective objects with
optically rough surfaces, lack an underlying physical explana-
tion for principles. We have established a forward model with
rigorous deduction to prove that FP can be used for diffuse
reflective objects, rather than simply suppressing speckle.
Our 10 m standoff-distance experiment realized a theoretical
synthetic aperture with ∼1 mm2 FOV. The imaging distance
and FOV have increased by orders of magnitude compared
with SAVI method. We performed the proposed speckle
denoising algorithm on simulated data, and the PSNR value
can be improved up to around 25–30 dB. In addition, we an-
alyzed the limit resolution of coherent imaging with speckles
based on the Rayleigh criterion, and quantitatively validated
the conclusion on our experimental platform, which can be vi-
tal for predicting and evaluating the performance of practical
coherent imaging systems (e.g., laser imaging, laser display).

An important issue following naturally would be how our
scheme can be extended to more complex application scenarios.
When imaging at a much longer distance (like 1 km), one main
challenge for our scheme lies in the atmospheric turbulence
[35], which might introduce unstable and fluctuated distortion
to illumination and reflection wavefronts. The distortion on an
illumination wavefront should present a limited effect since it
can be overwhelmed by the random phase as the forward model
discussed in Section 2.B. The distortion on the reflection wave-
front, on the other hand, can be problematic for long-range
imaging like astronomy imaging. Actually, the turbulence
can be regarded as the wavefront error in the pupil function
[36]. As FP reconstruction allows correction of aberrations,
it becomes possible to reconstruct the pupil function with a
turbulent wavefront. To tackle the space-variant wavefront dis-
tortion, FP reconstruction can be performed targeted at small
image patches where the distortion can be approximated to be
space-invariant. In addition, it can be feasible to minimize the
capture time to freeze the distorted wavefront by using the cam-
era array or laser array, that is, to reduce the impact of atmos-
pheric disturbance by improving data collection efficiency. The
effect of stray light might be another problem to be solved,
which is well worthy of study and discussion in future work.
Possible solutions include filtering out light with certain wave-
lengths or using a lens hood to suppress stray light when nec-
essary.

APPENDIX A: DERIVATION OF RESOLUTION
LIMIT FOR COHERENT IMAGING WITH
SPECKLE

In coherent scenarios, a single point A passing through a cir-
cular aperture with diameter D will produce the coherent point
spread function as follows [1]:

PSFC �θ� �
2J1�kDθ∕2�

kDθ∕2
, (A1)

where k � 2π∕λ is the wavenumber, J1�·� is the first-order
Bessel function, and θ is the diffraction angle.

Another point B with angular displacement Δθ relative to
point A will generate a new coherent point spread function.
And the coherent PSF of point B will interfere with that of
point A. Then, the intensity of the two points’ interference field
is given by

I�θ;Δθ� � jPSFC �θ� � ejφ0PSFC �θ� Δθ�j2

� PSF2C �θ� � PSF2C �θ� Δθ�
� 2PSFC �θ�PSFC �θ� Δθ� cos�φ0�, (A2)

where φ0 is the phase difference between point A and point B.
It is well known that the phase difference φ0 has a profound
impact on the resolution [2]. In the case where φ0 � π∕2, the
cross term in Eq. (A2) is zero, so that the limiting resolution is
given by the angular radius of the Airy spot Δθ � 1.22λ∕D as
for the incoherent case. When the two points are anti-phase
(φ0 � π), the two CPSFs are destructively interfered to pro-
duce zero intensity in the central location. Therefore, the
two points are always distinguishable in theory. The worst res-
olution case occurs when the two points are in-phase (φ0 � 0),
and their CPSFs are constructively interfered in the central lo-
cation. The illustrative simulation of two coherent points’
superimposed intensity is shown in Fig. 11.

In the reflective-mode coherent imaging, the random phase
fluctuates significantly within the range [−π, π]. A conservative
way to define the resolution limit is to consider the worst case,
so that the points are always distinguishable. When phase dif-
ference ϕ0 is zero, Eq. (A2) is rewritten as

I�θ;Δθ� � PSF2C �θ� � PSF2C �θ� Δθ�
� 2PSFC �θ�PSFC �θ� Δθ�

� �PSFC �θ� � PSFC �θ� Δθ��2: (A3)

The Rayleigh criterion can be generalized to include point
spread functions that have no zero in the neighborhood of their
central maximum by taking the resolution limit as the distance
for which the intensity at the central dip in the composite im-
age is 81% of that at the maxima on either side [1,3]. This

(a)

(b)

Fig. 11. Superimposed intensity of two coherent points in the case
of phase differences φ0 � 0, π∕2, and π. Two points are angularly
displaced with (a) Δθ � 1.22λ∕D and (b) Δθ � 1.60λ∕D.
Superimposing is simulated using Eqs. (A1) and (A2). When
φ0 � π, the two points are always resolvable. And for the worst case
φ0 � 0, two points are just resolvable when Δθ � 1.60λ∕D.
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corresponds to a central dip of 19% of the maximum intensity.
Based on Eq. (A3), it is easy to numerically compute the profile
of superimposed intensity of two points at a given Δθ. And
from the profile, we can obtain the peak intensity and the cen-
tral intensity, and thus calculate the central-to-peak ratio. The
plot of central-to-peak ratio under various Δθ is shown in
Fig. 12. According to the Rayleigh criterion, when the
central-to-peak ratio reaches 0.81, the limiting resolution is
given by

Δθ � 1.60λ
D

: (A4)

Next, we perform the simulation using the double splits. The
double splits with transmission 1 are used as the amplitude of
the object. And to simulate the speckle, a uniform distribution
within the range [−π, π] is used as the phase of the object. The
splits’ object convolves with the coherent PSF as defined in
Eq. (A1) with diameter D and wavelength λ to simulate the
image field. By taking the intensity of the image field, the
speckle image of the double splits is obtained. Three simulated
speckle images with different split displacements are shown in
Fig. 13. When the two splits are close [Fig. 13(a)], they cannot
be distinguished, and the image only presents a wide split. The
middle image shows the simulated image when the angular dis-
placement Δθ meets Eq. (A4). It is seen that there is a gray line
that separates the two splits. Further increasing Δθ to 1.80λ∕D
would darken and widen the separating line, and thus help to
distinguish the double splits.

APPENDIX B: SPECKLE DENOISING
ALGORITHM

According to literature [4], the probability of the speckle inten-
sity I follows the negative exponential distribution form
p�I� ∝ exp�−I∕μ�, where μ is the uncorrupted intensity repre-
sented as the mean intensity. It is straightforward to express the
speckle as a multiplicative noise model I � μ × n, where n is
the multiplicative speckle noise, and it follows p�n� ∝ exp�−n�.
By taking the logarithm on the multiplicative noise model, it is
transformed into the additive noise model

I log � ln�I� � ln�μ� � ln�n� � μlog � nlog, (B1)

where nlog is the logarithmic of the speckle noise. The proba-
bility distribution of nlog can then be derived as follows:

P�N log < nlog� � P�N < exp�nlog��

�
Z

exp�nlog�

0

exp�−n�dn, (B2)

p�nlog� ∝
d�1 − exp�− exp�nlog��

d�nlog�
∝ exp�nlog − exp�nlog��: (B3)

Although p�nlog� resembles the Gaussian distribution function
in that it is unimodal and gradually drops to both ends, its fit-
ting to the Gaussian distribution function shows the difference
when nlog is below zero [see Fig. 14(a)]. The classical denoising
algorithms target on the additive Gaussian noise. Since nlog
does not follow the Gaussian distribution, the Gaussian-based
denoising algorithms will be less effective on the speckle noise.

We design a transformation function f �u� as follows:

f �u� �
�
−

ffiffiffiffiffi
−u

p
, u < 0

u, u ≥ 0
: (B4)

Let ntran � f �nlog�, and we can derive the distribution of
p�ntran� in a similar way as for Eqs. (B6) and (B7). p�ntran�
is then given by

p�ntran� �
�
−2ntran exp�−n2tran − exp�−n2tran��, ntran < 0
exp�ntran − exp�ntran��, ntran ≥ 0

:

(B5)

After the transformation, the distribution of p�ntran� can be well
fitted by two-stage Gaussian distribution [see Fig. 14(b)]:

pfit�ntran� �
(
0.518 exp

�
−�ntran�0.9588�2

0.4951

�
, ntran < 0

0.3817 exp
�
−n2tran
1.23

�
, ntran ≥ 0

: (B6)
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Fig. 12. Plot of central-to-peak ratio versus angular displacement
Δθ in the case of ϕ0 � 0.

(a) (b) (c)

Fig. 13. Simulated speckle image of double splits under various an-
gular displacements between two splits. (a) Δθ � 1.40λ∕D,
(b) Δθ � 1.60λ∕D, and (c) Δθ � 1.80λ∕D.

Fig. 14. Gaussian fitting for the probability distribution of nlog and
ntran. (a) Fitting results of p�nlog� and (b) fitting results of p�ntran�.
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Although the nlog is not directly accessible, it can be estimated
with nlog � I log − μlog. Here, the uncorrupted image μlog can
be obtained by denoising I log. Then the estimated logarithm
noise n̂log is given by

n̂log � I log −De�I log� � nlog � ϕlog, (B7)

where De�·� denotes the denoising operator; in particular,
BM3D [5] is used as De�·� in this paper. ϕlog is the difference
between n̂log and nlog, and it is also the residual between the
denoised result De�I log� and ground truth μlog. Due to the in-
effectiveness of the denoising procedure, ϕlog retains a certain
amount of image details. So it would be beneficial to recover
these details.

After the estimation of the logarithm noise n̂log, it is trans-
formed into n̂tran � f �n̂log�. Then, by adding n̂tran toDe�I log�,
we construct a new noisy image:

Î tran � De�I log� � n̂tran: (B8)

Now let us take a close look at n̂tran and its role on the new
constructed image Î tran. In the case of n̂log ≥ 0, we have
n̂tran � n̂log � nlog � ϕlog. Substituting it into Eq. (B9), we
have

Î tran � De�I log� � ϕlog � nlog � De�I log� � ϕlog � ntran:

(B9)

In the other case when n̂log < 0, we have n̂tran � −
ffiffiffiffiffiffiffiffiffi
−n̂log

p �
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�nlog � ϕlog�

p
. We further expand n̂tran with the Tylor

series as follows:

n̂tran � −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�nlog � ϕlog�

q
� −

ffiffiffiffiffiffiffiffiffi
−nlog

p
− ϕlog

1

2
ffiffiffiffiffiffiffiffiffi−nlog

p � o�ϕ2
log�

≈ ntran � ϕlog

1

2ntran
: (B10)

Substituting Eq. (B7) into Eq. (B9), we have

Î tran � De�I log� � ϕlog

1

2ntran
� ntran: (B11)

From Eqs. (B9) and (B11), it is seen that the missing image
details in ϕlog are retained in Î tran. And the noise distribution
in Î tran follows the two-stage Gaussian distribution as defined in
Eq. (B5). Therefore, it would be effective to denoise Î tran using
a Gaussian-based denoising algorithm. We then perform the
denoising on Î tran using BM3D:

μ̂log � De�Î tran�: (B12)

Finally, we seek to inversely transform μlog back to μ. We find
that the exponential transform is not an optimal solution since
it is a biased estimate. We simulate the speckle image with ap-
proximately 10,000 natural images, and perform the denoising
with our scheme. Then, we find the fitted function for the in-
verse transformation, given by

μ̂ � φ�μ̂log� � exp�−0.0349μ̂2log � 1.2175μ̂log � 0.1292�:
(B13)
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